Declaration of conformity for products with Model EPDs

FEICA (Association of European Adhesive & Sealant Industry) has developed so-called Model Environmental Product Declarations (Model EPDs) and had them independently verified by the Institute Construction and Environment (IBU). These IBU verified Model EPDs have been made publicly available by FEICA and IBU. The Model EPDs represent the current production technology in Europe. ARDEX Skandinavia A/S as a member of Danish Coating and Adhesives Association (DFL), part of the confederation of Danish Industry (DI), which is a national association member of FEICA, has the right to declare that a specific FEICA Model EPD applies to the named product listed below. The compliance of our products to the Model EPDs is checked on the base of our formulations, by using an IBU-approved guideline procedure. We hereby declare that the product

ARDEX 7, Sealant adhesive

meets the criteria of the attached Model EPD

EPD-FEI-20160017-IBG1-EN for "Modified mineral mortars, group 1" and

ARDEX 8, Sealant adhesive

meets the criteria of the attached Model EPD

EPD-FEI-20160084-IBG1-EN for "Dispersion-based products, Class A"

This means that the life cycle assessment data and other content of the Model EPD apply to these named products and may be used for sustainability assessment of the construction products and construction projects, in which they are used.

ARDEX Skandinavia A/S

ARDEX GmbH

Nicolai Olsen

Nordic Technical Manager

Dr. Julia Soldat Sustainability Manager

Appendix:

EPD with declaration number: **EPD-FEI-20160017-IBG1-EN**EPD with declaration number: **EPD-FEI-20160084-IBG1-EN**

ARDEX GmbH

Friedrich-Ebert-Straße 45

58453 Witten

www.ardex.de

Tel.: +49 2302 664-511

Fax: +49 2302 664-298

kundendienst@ardex.de

www.ardex.de

ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

Owner of the Declaration FEICA - Association of the European Adhesive and Sealant Industry

Programme holder Institut Bauen und Umwelt e.V. (IBU)

Publisher Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-FEI-20160017-IBG1-EN

ECO EPD Ref. No. ECO-00000372

 Issue date
 23.05.2016

 Valid to
 22.05.2022

Modified mineral mortars, group 1
FEICA - Association of the European
Adhesive and Sealant Industry

www.bau-umwelt.com / https://epd-online.com

1. General Information

FEICA - Association of the European Adhesive and Sealant Industry

Programme holder

IBU - Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany

Declaration number

EPD-FEI-20160017-IBG1-EN

This Declaration is based on the Product Category Rules:

Mineral factory-made mortar, 07.2014 (PCR tested and approved by the SVR)

Issue date

23.05.2016

Valid to

22.05.2022

Wermanes

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)

Dr. Burkhart Lehmann (Managing Director IBU)

Modified mineral mortars, group 1

Owner of the Declaration

FEICA - Association of the European Adhesive and Sealant Industry Avenue E. van Nieuwenhuyse 4 1160 Brussels

Belgium

Declared product / Declared unit

1 kg of modified mineral mortar with a density 800 - 1,700 kg/m³

Scope:

This validated Declaration entitles the holder to bear the symbol of the *Institut Bauen und Umwelt e.V.* It exclusively applies for products produced in Europe and for a period of five years from the date of issue. This EPD may be used by FEICA members and their members provided it has been proven that the respective product can be represented by this EPD. For this purpose a guideline is available at the FEICA secretariat. The members of FEICA are listed on its website. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification

The CEN Norm /EN 15804/ serves as the core PCR Independent verification of the declaration according to /ISO 14025/

internal	ŀ
----------	---

externally

Mr Olivier Muller (Independent verifier appointed by SVR)

2. Product

2.1 Product description

Modified mineral mortars are combinations of one or more inorganic binder, aggregates, water and if necessary additives. They comply with manifold, often specific, tasks in the construction, furnishing and refurbishment of buildings.

The product displaying the highest environmental impacts was used as a representative product for calculating the Life Cycle Assessment results (worst case-approach).

2.2 Application

Modified mineral mortars are used for the following applications:

Module 1: Modified mineral mortars as repair mortar for the protection and repair of concrete structures

- **1.1** Products for structural and non-structural repair which are used to restore the original condition of concrete structures and/or to replace defective concrete
- **1.2** Products for reinforcement corrosion protection *Module 2:* Adhesives based on modified mineral mortars

- **2.1** Products for bonding ceramic tiles as well as natural stone for internal and external installations on walls, floors and ceilings
- 2.2 Products for bonding thermal insulation composite panels

Module 3: Modified mineral mortars as joint fillers Products for joint filling of wall and floor coverings made of ceramic tiles as well as natural stone for indoor and outdoor applications

Module 4: Modified mineral mortars as cementitious screed, floor levelling compounds, filler, flowing screed Products for manufacturing bonded screed, screeds on separating or insulating layers, for levelling and repairing usual building substrates such as rough, uneven concrete floors, cement, anhydrite and mastic asphalt screed, heated screed and ceramic coverings for indoor and outdoor applications

Module 5: Modified mineral mortars as levelling compounds for walls and ceilings

Products for levelling and repairing rough, uneven walls, for repairing grit spots, closing blowholes and modelling broken corners and edges

Module 6: Modified mineral mortar as grouts

Products for grouting on holes, recesses, concrete precast columns, foundations and for anchoring machine components indoors and outdoors

Module 7: Modified mineral mortars for waterproofing slurries

Products for providing cement-based waterproofing surfaces in structural and civil engineering. For use in new and old buildings as well as beneath tiles (mineral or flexible waterproofing slurries)

Module 8: Modified mineral mortars as repair mortar Products for carrying out repairs (e.g. for repairing minor voids and holes) on horizontal and vertical areas

2.3 Technical Data

Construction products with Declaration of Performance in accordance with /CPR/

Module 1: Modified mineral mortars as repair mortar for the protection and repair of concrete structures The minimum requirements according to /EN 1504/ apply. These are:

1.1

Products for structural and non-structural repair - Requirements on performance characteristics for all intended uses in accordance with /EN 1504-3/, Table 1:

- Compressive strength (/EN 12190/)
- Chloride ion content (/EN 1015-17/)
- Adhesive strength by pull off test (/EN 1542/)
- Restrained shrinkage/expansion (/EN 12617-4/)
- **1.2** Reinforcement corrosion protection products Requirements on all intended uses in accordance with /EN 1504-7/, Table 1:
- Corrosion protection (/EN 15183/)

Other performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance

Module 2: Adhesives based on modified mineral mortar

- **2.1** The minimum requirements in accordance with /EN 12004/ apply. These are:
- Tensile adhesion strength after dry storage (/EN 1348/)
- Tensile adhesion strength after water immersion (/EN 1348/)
- Tensile adhesion strength after heat ageing (/EN 1348/
- Tensile adhesion strength after freeze/thaw cycles (/EN 1348/)
- Open time: Tensile strength (/EN 1346/)
 Other performance characteristics in accordance with
 the manufacturer's technical documentation /
 declaration of performance
- **2.2** Performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance; /ETAG 004/ apply.

Module 3: Modified mineral mortars as joint fillers The minimum requirements of /EN 13888/ must be maintained.

Module 4: Modified mineral mortars as cementitious screed, floor levelling compounds, filler, flowing screed:

The minimum requirements of /EN 13813/ must be maintained. These are:

- Reaction to fire (/EN 13501-1/)
- Release of corrosive substances
- Compressive strength (/EN 13892-2/)
- Flexural strength (/EN 13892-2/)

Other performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance

Module 5: Modified mineral mortars as levelling compounds for walls and ceilings

Module 5.1: The minimum requirements of /EN 998-1/ apply. These are:

- Reaction to fire (/EN 13501-1/)
- Compressive strength
- Dry bulk density
- Capillary water absorption
- Water vapour permeability

Other performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance

Module 5.2: The minimum requirements of /EN 13279/ apply.

Performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance

Module 6: Modified mineral mortars as grouts **Module 7:** Modified mineral mortar for waterproofing slurries

The minimum requirements in accordance with /EN 14891/ apply.

Module 8: Modified mineral mortars as repair mortar Performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance

2.4 Placing on the market / Application rules

For the placing on the market in the EU/EFTA (with the exception of Switzerland) products falling under the Regulation (EU) No 305/2011 need a Declaration of Performance taking into consideration either the relevant harmonised European standard as cited in chapter 2.3 or the European Technical Assessment and the CE-marking.

For the application and use of the products the respective national provisions apply.

2.5 Delivery status

Modified mineral mortars are generally manufactured and supplied as factory-made dry mortars. Factory-made dry mortar is a finished mixture of base materials which merely requires the addition of water on the building site. The products can be supplied in 1-5 kg bags, 15-25 kg sacks, Big Bags (1 t), minitainers (1.2 t) or as silo goods (5-15 t).

Paper sacks with polyethylene lining were modelled as packaging (worst-case approach).

2.6 Base materials / Ancillary materials

On average, the products covered by this EPD contain the following ranges of base materials and auxiliaries referred to:

Cement: ~ 2 - 85%

Filler materials: ~ 10 - 90%

Plaster: ~ 0 - 45% Additives: ~ 0 - 6%

Dispersion powder: ~ 0 - 5%

These ranges are average values and the composition of products complying with the EPD can deviate from these concentration levels in individual cases. More detailed information is available in the respective manufacturer's documentation (e.g. product data sheets).

In individual cases, it is possible that substances on the list of materials of particularly high concern for inclusion in Annex XIV of the /REACH/ regulation are contained in concentrations exceeding 0.1%. If this is the case, this information can be found on the respective safety data sheet. Mortar for special

applications can also contain fungicides, whereby the functional group of fungicides is dependent on the chemical specification.

2.7 Manufacture

The raw materials are stored in silos, big bags or sacks in the manufacturing plant and fed gravimetrically in accordance with the respective formula and mixed intensively. The mix is then packaged.

Quality and environmental standards in accordance with /ISO 9001:2008-12/ and the provisions outlined in the relevant regulations such as the Industrial Safety Regulation and Federal Pollution Control Act are adhered to.

2.8 Environment and health during manufacturing

The state-of-the-art involves maximum recirculation of dry waste into production. Wherever dust is incurred during production in the plant, it is directed to a filter system taking consideration of the limit values applicable for the workplace and using the corresponding extraction plants. Sack discharge stations connected to the extraction plant offer employees additional protection from dust. Most of the dust collected in the filter system and any residue incurred during production is returned to the manufacturing process.

Powder residues: Residual product is returned to the production process wherever possible.

Air: Process air is dedusted autonomously, whereby the values are far below legal requirements.

Water: The production process does not involve water. Very low volumes of water are required for laboratory tests and for sanitary facilities.

Noise: Noise level measurements have indicated that all values established within the production facility fall below the hearing protection limit of 85dB(A).

Waste: The main types of waste are powder waste, paper (paper bags) and foil. Low volumes of metal scrap (metal containers), waste oil (maintenance), wood (pallets) and commercial waste are incurred. All waste is separated, stored and redirected to the recycling circuit or disposed of.

2.9 Product processing/Installation

Modified mineral mortars can be processed both automatically and manually. The mortars are either automatically removed from a silo using a dry conveyor or manually taken from the container, mixed with water and installed.

The professional liability association's rules apply as well as the respective safety data sheets pertaining to the construction products.

On account of the various hydrate levels of cement, lime and calcium sulphate binding agents in the mineral mortar, the fresh mortar mixed with water is usually strongly alkaline. In the case of more extensive contact, this alkaline state can cause serious damage to eyes and skin. Therefore, any contact with eyes or skin must be avoided by taking personal protective measures and the information outlined on the safety data sheet must be observed.

Uncontrolled dust emissions should be avoided. Modified mineral mortars may not be discharged into the sewage system, surface water or groundwater. Waste incurred on the building site (packaging, pallets, residual mortar) must be collected separately. Suitable waste disposal companies dispose of packaging materials and mortar sacks and return them to the recycling circuit. Dry mortar residue is taken back by

the manufacturing plants and used as a raw material. No dry mortar residue in mortar sacks is incurred. Hard mortar residue can be recycled or disposed of as building site rubble.

2.10 Packaging

A detailed description of packaging is provided in section 2.5. Empty, trickle-free paper containers and clean PE foils can be recycled.

2.11 Condition of use

Modified mineral mortar does not rot and is resistant to ageing when used in accordance with the designated purpose of the respective products.

It is a durable product which, when used as adhesive, screed, waterproofing material or repair product, makes an essential contribution towards improving building function and value.

2.12 Environment and health during use

Owing to the stable crystalline bond and firm structure achieved after curing, emissions are extremely low and harmless to health when used in accordance with the designated purpose of the respective products. No risks are known for water, air and soil if the products are used as designated.

Natural ionising radiation from mineral mortar is extremely low and negligible in terms of health hazards.

Options for applications in indoor areas with permanent stays by people:

Evidence of the emission performance of construction products in contact with indoor air and depending on the designated use must be submitted for applications in indoor areas with permanent stays by people, e.g. in accordance with the /AgBB/ test scheme or the /GEV/ (Gemeinschaft Emissionskontrollierte

Verlegewerkstoffe, Klebstoffe und Bauprodukte e.V., Düsseldorf) /EMICODE/® marking system typically applied in Germany.

2.13 Reference service life

Modified mineral mortars decisively improve the usability of building structures and significantly extend their original service lives.

The anticipated reference service life depends on the specific installation situation and the exposure associated with the product. It can be influenced by weathering as well as mechanical or chemical loads.

2.14 Extraordinary effects

Fire

In accordance with Commission Decision 94/611EC, modified mineral binding agents comprising finely-distributed organic components must always be classified in reaction-to-fire class A1 "No contribution to fire" in accordance with /EN 13501-1/.

Where higher percentages of organic components are involved, it can also be assumed that at least the requirements of /EN 13501-1/ are maintained for fire class E and Efl.

Water

No relevant volumes of water-soluble substances hazardous to water are washed out when exposed to water (e.g. flooding). Cement-based mortar is stable in terms of structure and is not subject to any changes in form when exposed to water and drying.

Mechanical destruction

The mechanical destruction of modified mineral mortars does not lead to any decomposition products which are harmful for the environment or health. Dust incurred during de-construction should be avoided by taking the appropriate measures (e.g. humidification).

2.15 Re-use phase

Components manufactured using modified mineral mortars can usually be easily demolished. When removing a building, the materials do not need to be treated as special waste; care should, however, be taken to ensure unmixed residual materials wherever possible. Mineral mortars can usually be redirected to normal building material recycling circuits. Re-use is generally in the form of recycled aggregate in building construction and civil engineering.

No practical experience is currently available for reusing components comprising modified mineral mortar after decommissioning.

2.16 Disposal

The portion of a modified mineral mortar-based product applied at an other construction product is rather low. These low amounts do not play a role when the construction product is disposed. They do not interfere with the disposal/recycling of other components / building materials.

The following European Waste Codes waste (EWC) codes can apply:

Mineral mortar: /EWC 2000/532/EC 170101/ and /EWC 2000/532/EC 101314/

Mineral filler and levelling compound: /EWC 2000/532/EC 170107/

Calcium sulphate-based filler and levelling compound: /EWC 2000/532/EC 170802/

2.17 Further information

More information is available in the manufacturer's product or safety data sheets and is available on the manufacturer's Web sites or on request. Valuable technical information is also available on the associations' Web sites.

3. LCA: Calculation rules

3.1 Declared Unit

This EPD refers to the declared unit of 1 kg modified mineral mortar with a density of 800 - 1,700 kg/m³. The results of the Life Cycle Assessment provided in this declaration have been calculated from the product with the highest environmental impact (worst-case scenario).

With the information about the consumption per surface area the results can be calculated into a declared unit of kg/m³.

Declared unit

Name	Value	Unit
Declared unit	1	kg
Conversion factor to 1 kg	1	-

3.2 System boundary

Modules A1-A3, A4, A5 and D are taken into consideration in the LCA:

- A1 Production of preliminary products
- A2 Transport to plant
- A3 Production incl. provision of energy, production of packaging as well as auxiliaries and consumables, waste treatment)
- A4 Transport to site
- A5 Installation (disposal of packaging & installation losses and emissions during installation)
- D Credits from incineration of packaging materials

The declaration is therefore from "cradle to gate - with options".

3.3 Estimates and assumptions

Where no specific /GaBi/ processes were available, the individual recipe ingredients of formulation were estimated on the basis of information provided by the manufacturer or literary sources.

3.4 Cut-off criteria

All raw materials submitted for the formulations and production data were taken into consideration. The manufacture of machinery, plants and other infrastructure required for production of the products under review was not taken into consideration in the LCA. Transport of packaging materials is also excluded.

3.5 Background data

Data from the /GaBi/ ts database was used as background data. Where no background data was available, it was complemented by manufacturer information and literary research.

3.6 Data quality

Representative products were applied for this EPD and the product in a group displaying the highest environmental impact was selected for calculating the LCA results. The datasets are less than 5 years old. Production data and packaging are based on details provided by the manufacturer. The formulation used for evaluation refers to a specific product.

3.7 Period under review

Representative formulations were accepted by FEICA Ltd and collected in 2011.

3.8 Allocation

No allocations were applied for production. A multiinput allocation with a credit for electricity and thermal energy was used for incineration of packaging materials. The credits achieved through packaging disposal are declared in Module D.

3.9 Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account. In this case, 1 kg modified mineral mortar was selected as the declared unit. Depending on the application, a corresponding conversion factor such as the specific use per surface area must be taken into consideration.

4. LCA: Scenarios and additional technical information

The following technical information is a basis for the declared modules or can be used for developing specific scenarios in the context of a building assessment if modules are not declared (MND).

Transport to the building site (A4)

Name	Value	Unit
Litres of fuel	0.0016	l/100km
Transport distance	1000	km
Capacity utilisation (including empty runs)	85	%
Gross density of products transported	800 - 1700	kg/m³
Capacity utilisation volume factor	1	-

Installation into the building (A5)

Name	Value	Unit
Water consumption	0.0003	m³
Material loss	0.013	kg

5. LCA: Results

DESC	RIPT	ION O	F THE	SYST	гем в	OUND	ARY	(X = IN	CLI	JDE	ED IN	LCA	: MND =	: MOD	ULE N	OT DE	ECLARED)
	DUCT S		CONST ON PRO	RUCTI				USE STAGE							FE STA		BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement			Operational energy use	Operational water	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B!	5	В6	В7	C1	C2	C3	C4	D
X	Χ	Х	X	Х	MND	MND	MNR	MNR	MN	IR	MND	MN	D MND	MND	MND	MND	X
RESL	JLTS	OF TH	IE LCA	- EN	VIRON	MENT	AL II	/РАСТ	: 1 k	kg i	modif	ied r	nineral	mortai	r, grou	p 1	
			Param					Unit			A1-A3		A4		A5		D
		Glob	oal warmir	ng potent	ial			kg CO ₂ -Eo	1.]		4.02E-1		4.82E-		9.97E		-3.69E-2
					ric ozone	layer		[kg CFC11-Eq.] 5.16E-9				2.21E-14 3.60E-13			-1.21E-11		
	Ac		n potential					kg SO ₂ -Ec			1.62E-3		1.19E-		1.24E		-5.84E-5
Formet	ion notor		rophicatio		ai hotochem	signal excide	nto [k	g (PO ₄) ³ -E	q.j		1.38E-4 1.52E-4		2.75E- -3.33E-		2.44E 1.13E		-5.91E-6 -6.20E-6
FOITIAL					ossil resou			[kg ethene-Eq.] 1.52E-4 [kg Sb-Eq.] 1.43E-6			3.21E-		1.13E		-6.27E-9		
					sil resourc			[MJ] 6.29E+0			6.64E-		2.20E		-5.06E-1		
RESU							E: 1	1 kg modified mineral mort									
			Parar					Unit A1-A3			A4		A 5		D		
	Ren	newable p	orimary er	nergy as e	energy ca	rrier		[MJ] 1.91E+0				IND		IND		IND	
Re					as materia		n	[MJ] 0.00E+0				IND		IND		IND	
					nergy resc								3.77E-3		3.16E-3		-8.34E-2
					s energy o material u			[MJ] 6.45E+0				IND IND		IND		IND IND	
					energy re			[MJ] 6.00E-1 [MJ] 7.05E+0				6.66E-2		2.56E-2	,	-6.19E-1	
	TOTAL GOV		of secon			0001000		[kg]		0.001			0.00E+0		0.00E+0		0.00E+0
			enewable					[MJ]		0.001			0.00E+0		0.00E+0		0.00E+0
	ι				ndary fuels	3		[MJ]	(0.001			0.00E+0		0.00E+0)	0.00E+0
			se of net					[m³]		IN			IND		IND		IND
					ITPUT r, groι		/S AN	ID WAS	STE	C.A	ATEG	ORIE	S:				
i kg i	- Iouii	ioa iii	Parar		ı, groc	. P		Unit		A1-	-A3		A4		A5		D
		Нат	ardous wa	aste disn	osed			[kg]		IN	D		IND		IND		IND
			azardous					[kg]		IN			IND		IND		IND
			oactive w					[kg]		IN			IND		IND		IND
			omponent					[kg]		0.00			0.00E+0		0.00E+0		0.00E+0
			laterials fo					[kg]		0.00			0.00E+0		0.00E+0		0.00E+0
			rials for er					[kg]		0.00			0.00E+0		0.00E+0		0.00E+0
			orted ele					[MJ]		0.00		-	0.00E+0 0.00E+0		1.29E-1 2.99E-1		0.00E+0 0.00E+0
Exported thermal energy							[IVIO]		J.JUI			0.00∟ 10		Z.JJL-		0.00L10	

Not all of the used inventories for the calculation of the LCA support the methodological approach for the declaration of water and waste indicators. The material amounts, displayed with these inventories, contribute significantly to the production. The indicators Use of fresh water, Hazardous waste disposed, Non-hazardous waste disposed and Radioactive waste disposed are therefore not declared (decision of IBU advisory board 2013-01-07).

6. LCA: Interpretation

All impacts are associated with the production phase (A1-A3). The most significant contribution to the production phase impacts is the upstream production of raw materials as main driver. The majority of life cycle energy consumption takes place during the production phase (A1-A3). Besides the cement also the dispersion powder influences the results significantly, although this is only used up to 5%. Significant contributions to Primary Energy Demand – Non-renewable (PENRT) derive from the energy resources used in the production of raw materials. The largest contributor to Primary Energy Demand – Renewable (PERT) is the consumption of renewable

energy resources required for the generation and supply of electricity. During manufacturing (A1-A3) some influence also arises due to the wooden pallets and paper used as packaging that need solar energy for photosynthesis. It should be noted that Primary Energy Demand – Renewable (PERT) generally represents a small percentage of the production phase primary energy demand with the bulk of the demand coming from non-renewable energy resources. CO_2 is the most important contributor to Global Warming Potential (GWP). For the Acidification Potential (AP), NO_{x} and SO_2 contribute to the largest share.

Transportation to the construction site (A4) and the installation process (A5) make a negligible contribution to almost all impacts. The only exception is a relevant influence of carbon dioxide emissions in module A5 to Global Warming Potential (GWP) due to the incineration of the packaging materials paper and pallets.

In module A4, transport to construction site, values for Photochemical Ozone Creation Potential (POCP) are negative due to emission profile modelled for the selected transportation process and of the characterisation method used in CML 2001 for the calculation of the POCP. Transportation processes are responsible for the emission of NOx in the ground layer atmosphere. NO in particular can have an ozone

depleting effect that is reflected in CML 2001 by assigning a negative characterisation factor to this substance. However, although these negative values may appear unusual, it should be considered that POCP is only one of the analysed environmental impact categories. All other potential impacts would increase with greater transportation distances, showing that transportation is a process leading to net environmental burdens. Furthermore, even for POCP, transportation processes needed for supply of materials and product distribution only have limited counterbalance effects on the overall LCA results. Energy credit from incineration of packaging material reported in module D show a negligible influence on the overall results.

7. Requisite evidence

VOC

Special tests and evidence have not been carried out or provided within the framework of drawing up this Model EPD. Some member states require special documentation on VOC emissions into indoor air for specific areas of application. This documentation, as well as documentation for voluntary VOC labelling, has to be provided separately and is specific for products in question.

Evidence pertaining to VOC emissions shall show

- either an attestation of compliance with,
- or documentation of test data that are required in, any of the existing regulations or in any of the existing voluntary labelling programs for low-emitting products, as far as these
- (1) include limits for the parameters TVOC, TSVOC, carcinogens, formaldehyde, acetaldehyde, LCI limits for individual substances (including but not limited to the European list of harmonized LCIs), and the R value:
- (2) base their test methods on /CEN/TS 16516/ (or /EN 16516/, after the on-going revision of /CEN/TS 16516/);
- (3) perform testing and apply the limits after 28 days storage in a ventilated test chamber, under the

conditions specified in /CEN/TS 16516/; some regulations and programs also have limits after 3 days, on top of the 28 days limits;

(4) express the test results as air concentrations in the European Reference Room, as specified in /CEN/TS 16516/.

Examples of such regulations are the Belgian /Royal Decree C-2014/24239/, or the German /AgBB/. Examples of such voluntary labelling programs are /EMICODE/, /Blue Angel/ or /Indoor Air Comfort/.

Relevant test results shall be produced either by an /ISO 17025/ accredited commercial test lab, or by a qualified internal test lab of the manufacturer. Examples for the applied limits after 28 days of storage in a ventilated test chamber are:

- TVOC: 1000 μg/m³
- TSVOC: 100 μg/m³
- Each carcinogen: 1 μg/m³
- Formaldehyde: 100 μg/m³
- LCI: different per substance involved
- R value: 1 (meaning that, in total, 100% of the combined LCI values must not be exceeded).

Informative Annexes (2 tables):

Table 1 shows an overview of the most relevant regulations and specifications as of April 2015, as regards requirements after 3 days of storage in a ventilated test chamber.

Table 2 provides an overview of the most relevant regulations and specifications as of April 2015, as regards requirements after 28 days of storage in a ventilated test chamber. Some details may be missing in the table due to lack of space. Values given represent maximum values/limits.

	TVOC [μg/m³]	Sum of carcinogens. C1A,CA2 [µg/m³]	Formal- dehyde [µg/m³]	Acet- aldehyde [µg/m³]	Sum of Form- and Acet- aldehyde
German DIBt/AgBB regulation	10 000	10	-/-	-/-	-/-
draft Lithuanian regulation	10 000	10	-/-	-/-	-/-
EMICODE EC1	1 000	10	50	50	50 ppb
EMICODE EC1 PLUS	750	10	50	50	50 ppb

	TVOC [μg/m³]	TSVOC [μg/m³]	Each carcinogen C1A,CA2 [µg/m³]	Formaldehyde [μg/m³]	Acetaldehyde [μg/m³]	rci FCi	R value	Specials	Sum non-LCI & non- identified [µg/m³]
Belgian regulation	1000	100	1	100	200	Belgian list	1	Toluene 300 μg/m³	-/-
French regulations class A+	1000	-/-	-/-	10	200	-/-	-/-	List of 8 VOCs, 4 CMR	-/-
French regulations class A	1500	-/-	-/-	60	300	-/-	-/-	List of 8 VOCs, 4 CMR	-/-
French regulations class B	2000	-/-	-/-	120	400	-/-	-/-	List of 8 VOCs, 4 CMR	-/-
French regulations class C	>2000	-/-	-/-	>120	>400	-/-	-/-	List of 8 VOCs, 4 CMR	-/-
German DIBt/AgBB regulation	1000	100	1	100	1200	German AgBB list	1	-/-	100
draft Lithuanian regulation	1000	100	1	product type specific	-/-	Lithua- nian list	1	-/-	-/-
EMICODE EC1	100	50	1	(after 3 days)	(after 3 days)	-/-	-/-	-/-	-/-
EMICODE EC1 PLUS	60	40	1	(after 3 days)	(after 3 days)	German AgBB list	1	-/-	40
Finnish M1, sealants	20	-/-	1	10	-/-	-/-	-/-	Ammonia, odour	-/-
Finnish M1, adhesives	200 μg/m²h	-/-	5 μg/m²h	50 μg/m²h	-/-	-/-	-/-	Ammonia, odour	-/-

Leaching Measurement of leaching performance (eluate analysis) indicating the measurement process.

Leaching is only relevant for specific applications. In this case, information can be provided by the manufacturer.

8. References

PCR 2013, Part A: 2013-04

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for construction products from the range of Environmental Product Declarations from Institut Bauen und Umwelt e.V. (IBU) Part A: Calculation rules for the Life Cycle Assessment and requirements on the Background Report www.bau-umwelt.de

PCR 2011, Part B: 2011-06

Product Category Rules for Construction Products, Part B: Requirements on the EPD for mineral trade mortar

www.bau-umwelt.de

2000/532/EC: Commission decision of 3 May 2000 replacing decision 94/3/EC on a waste index as per

Article 1 a) of Council Directive 75/442/EEC on waste and Council decision 94/904/EC on an index of hazardous waste according to Article 1, paragraph 4 of Directive 91/689/EEC on hazardous waste

GaBi ts software

Software and database for comprehensive analysis. LBP, University of Stuttgart and thinkstep AG, 2015

GaBi ts documentation

Documentation of GaBi 6 data sets from the database for comprehensive analysis LBP, University of Stuttgart and thinkstep AG, 2015 http://documentation.gabi-software

96/603/EC:

Commission decision of 4 October 1996 for specifying a directory of products to be classified as category A "No contribution to fire" in accordance with decision 94/611/EC on construction products for implementing Article 20 of Directive 89/106/EEC

EN 1504-3:2006-03

Products and systems for the protection and repair of concrete structures – Definitions, requirements, quality control and evaluation of conformity – Part 3: Structural and non-structural repair

EN 1504-2:2015-03

Products and systems for the protection and repair of concrete structures – Definitions, requirements, quality control and evaluation of conformity – Part 2: Surface protection systems for concrete

EN 12190:1998-12

Products and systems for the protection and repair of concrete structures – Test methods – Determination of compressive strength of repair mortar

EN 1015-17:2005-01

Methods of test for mortar for masonry – Part 17: Determination of water-soluble chloride content of fresh mortars

EN 1542:1999-07

Products and systems for the protection and repair of concrete structures – Test methods – Measurement of bond strength by pull-off

EN 12617-4:2002-08

Products and systems for the protection and repair of concrete structures – Test methods – Part 4: Determination of shrinkage and expansion

EN 1504-7:2015-09

Products and systems for the protection and repair of concrete structures – Definitions, requirements, quality control and evaluation of conformity – Part 7: Reinforcement corrosion protection

EN 15183:2006-11

Products and systems for the protection and repair of concrete structures – Test methods – Corrosion protection test; German version EN 15183

EN 12004:2014-02

Adhesive for tiles – Requirements, evaluation of conformity, classification and designation

EN 1346:2007-11

Adhesives for tiles - Determining the open time

EN 1348:2007-11

Adhesive for tiles – Determination of tensile adhesion strength for cementitious adhesives

ETAG 004:2001-02-20

Guideline for European technical approval of external thermal insulation composite systems with rendering (ETAG 004)

EN 13888:2009-08

Grout for tiles – Requirements, evaluation of conformity, classification and designation

EN 13813:2003-01

Screed material and floor screeds – Screed materials – Properties and requirements

EN 13501-1:2010-01

Fire classification of construction products and building products – Part 1: Classification using data from reaction to fire tests

EN 13892-2:2003-02

Methods of test for screed materials – Part 2: Determination of flexural and compressive strength

EN 13501-1:2010-01

Fire classification of construction products building elements – Part 1: Classification using data from reaction to fire tests

EN 998-1:2015-11

Specification for mortar for masonry – Part 1: Rendering and plastering mortar

EN 13279-1:2008-11

Gypsum binders and gypsum plasters – Part 1: Definitions and requirements

EN 14891:2015-02

Liquid-applied water impermeable products for use beneath ceramic tiling bonded with adhesives – Requirements, test methods, evaluation of conformity, classification and designation

EWC 170101: 2000/532/EC

European Waste Catalogue / Ordinance on European List of Wastes Concrete

EWC 101314: 2000/532/EC

European Waste Catalogue / Ordinance on European List of Wastes Waste concrete and concrete sludge

EWC 170107: 2000/532/EC

European Waste Catalogue / Ordinance on European List of Wastes Mixtures of concrete, bricks, tiles and ceramics

EWC 170802: 2000/532/EC

European Waste Catalogue / Ordinance on European List of Wastes Gypsum based construction metals e.g. for plasterboard

CPR

Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC

REACH

Directive (EG) No. 1907/2006 of the European Parliament and of the Council dated 18 December 2006 on the registration, evaluation, approval and restriction of chemical substances (REACH), for establishing a European Agency for chemical substances, for amending Directive 1999/45/EC and for annulment of Directive (EEC) No. 793/93 of the Council, Directive (EC) No. 1488/94 of the Commission, Guideline 76/769/EEC of the Council and Guidelines 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC of the Commission.

EN ISO 9001:2008-12

Quality management systems - Requirements

ISO 16000-3:2013-01

Indoor air – Part 3: Determination of formaldehyde and other carbonyl compounds by sampling using a pump

ISO 16000-6:2012-11

Indoor air – Part 6: Determination of volatile organic compounds indoors and in test chambers by sampling on TENAX TA®, thermal desorption and gas chromatography using MS or FID

EN ISO 16000-9:2008-04

Indoor air – Part 9: Determination of the emission of volatile organic compounds from building products and furnishings – Emission test chamber method

EN ISO 16000-11:2006-06

Indoor air – Part 11: Determination of the emission of volatile organic compounds from building products and furnishings – Sampling, storage of samples and preparation of test specimens

CEN/TS 16516:2015-07

Construction products - Assessment of release of dangerous substances - Determination of emissions into indoor air

Royal Decree C-2014/24239

Belgisch Staatsblad 8 MEI 2014, p. 60603.

— Koninklijk besluit tot vaststelling van de drempelniveaus voor de emissies naar het binnenmilieu van bouwproducten voor bepaalde geoogde gebruiken

EN 17025: 2007-05

General requirements for the competence of testing and calibration laboratories

AgBB: 2012-06

Committee for Health-related Evaluation of Building Products: health-related evaluation of

emissions of volatile organic compounds (VOC and SVOC) from building products www.umweltbundesamt.de/produkte/bauprodukte/agb b.htm

EMICODE

GEV – Gemeinschaft Emissionskontrollierte Verlegewerkstoffe, Klebstoffe und Bauprodukte e. V. (pub.). www.emicode.de

Blue Angel

Environmental label organised by the federal government of Germany www.blauer-engel.de

Indoor Air Comfort

Product certification by Eurofins, Hamburg, Germany www.eurofins.com

Institut Bauen und Umwelt

Institut Bauen und Umwelt e.V., Berlin(pub.): Generation of Environmental Product Declarations (EPDs);

General principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013/04 www.bau-umwelt.de

ISO 14025

DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804

EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

Publisher

| Institut Bauen und Umwelt e.V. | Tel | +49 (0)30 3087748- 0 | Panoramastr. 1 | Fax | +49 (0)30 3087748- 29 | 10178 Berlin | Mail | info@bau-umwelt.com | Germany | Web | www.bau-umwelt.com |

Programme holder

thinkstep

Author of the Life Cycle Assessment

 thinkstep AG
 Tel
 +49 (0)711 341817 0

 Hauptstrasse 111 - 113
 Fax
 +49 (0)711 341817 25

 70771 Leinfelden-Echterdingen
 Mail
 info@thinkstep.com

 Germany
 Web
 www.thinkstep.com

Owner of the Declaration

FEICA - Association of the European
Adhesive and Sealant Industry
Avenue E. van Nieuwenhuyse 4
B-1160 Brussels
Web
Belgium

+32 (0)267 673 20 +32 (0)267 673 99 info@feica.eu www.feica.eu

ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

Owner of the Declaration FEICA - Association of the European Adhesive and Sealant Industry

Programme holder Institut Bauen und Umwelt e.V. (IBU)

Publisher Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-FEI-20160084-IBG1-EN

ECO EPD Ref. No. ECO-00000401

Issue date 29.08.2016

Valid to 28.08.2021

Dispersion-based products,

Class A

FEICA - Association of the European Adhesive and Sealant Industry

www.bau-umwelt.com / https://epd-online.com

1. General Information

FEICA - Association of the European Adhesive and Sealant Industry

Programme holder

IBU - Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany

Declaration number

EPD-FEI-20160084-IBG1-EN

This Declaration is based on the Product Category Rules:

Coatings with organic binders, 07.2014 (PCR tested and approved by the SVR)

Issue date

29.08.2016

Valid to

28.08.2021

brennages

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)

Dr. Burkhart Lehmann (Managing Director IBU)

Dispersion-based products, Class A

Owner of the Declaration

FEICA - Association of the European Adhesive and Sealant Industry Avenue E. van Nieuwenhuyse 4 1160 Brussels Belgium

Declared product / Declared unit

1 kg with a density 1,000 - 1,500 kg/m³

Scope:

This validated Declaration entitles the holder to bear the symbol of the *Institut Bauen und Umwelt e.V.* It exclusively applies for products produced in Europe and for a period of five years from the date of issue. This EPD may be used by FEICA members and their members provided it has been proven that the respective product can be represented by this EPD. For this purpose a guideline is available at the FEICA secretariat. The members of FEICA are listed on its website. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification

The CEN Norm /EN 15804/ serves as the core PCR
Independent verification of the declaration
according to /ISO 14025/
internally x externally

Mr Olivier Muller (Independent verifier appointed by SVR)

2. Product

2.1 Product description

Dispersion-based products comprise organic binding agents based on synthetic and/or natural resins, mineral fillers such as chalk as well as water and smaller volumes of auxiliaries (thickening agents, defoaming agents, surface-active agents, preservatives etc.). They dry physically through evaporation of the water contained therein. They comply with manifold, often specific, tasks in the

They comply with manifold, often specific, tasks in the construction, furnishing and repair of buildings. Using dispersion-based products decisively improves the fitness for use of structures and extends their life expectancy.

The product displaying the highest environmental impacts within the class of dispersion-based products considered was used as a representative product for calculating the Life Cycle Assessment results (worst case-approach).

2.2 Application

Dispersion-based products are used for the following applications:

Module 1: Dispersion adhesives, fixatives, precoatings and primers for floor coverings and parquet

flooring

Adhesives for, e.g.

- tufted carpets with various backing
- woven textile coverings, fibre-bonded and natural-fibre coverings
- resilient coverings (PVC, rubber)
- linoleum
- insulating bases and underlays
- parquet, laminate and wood blocks

on surfaces ready for laying. The products are suitable for normal wear in residential and commercial areas, also on heated floor constructions.

Module 2: Dispersion-based tile adhesive

Products for bonding ceramic tiles and paving as well as natural stone for internal and external installations on walls, floors and ceilings

Module 3: Dispersion-based adhesives, coatings and sealants

As structural adhesives, coatings and sealants:

- structural and repair adhesives
- dispersion filler compounds
- ioint sealants

Module 4: Dispersion-based products for waterproofing of buildings

Module 5: Dispersion-based primers and bonding agents for concrete and floor screeds

Module 6: Dispersion-based products for surface protection of concrete

To increase the durability of concrete and reinforced steel structures as well as for new concrete and for maintenance and repair work (for areas without vehicle traffic)

Module 7: Dispersion-based primers, barrier coatings, varnishes and glazes for coating of buildings, structural elements and components for decorative, functional or protective purposes

2.3 Technical Data

Module 1: Dispersion adhesives, fixatives, precoatings and primers for floor coverings and parquet flooring

Dispersion adhesives for floor coverings have to comply with the requirements of the /EN 14259:2003/. Fixatives do not usually comply with these requirements; their strengths are lower in accordance with their specifications. The performance characteristics of pre-coatings and primers are subject to the manufacturer's technical documentation / declaration of performance.

Dispersion adhesives for parquet: The test procedures and requirements of the /EN 14293:2006/ have to be fullfilled.

Module 2: Dispersion-based tile adhesive The minimum requirements in accordance with /EN 12004:2012/ must be maintained. These are:

- Shear adhesion strength after dry storage (/EN 1324:2007/)
- Shear adhesion strength after heat ageing (/EN 1324:2007/)
- Open time: tensile adhesion strength (/EN 1346:2007/)

Other performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance

Module 3: Dispersion-based adhesives, coatings and sealants

Performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance

Module 4: Dispersion-based products for waterproofing of buildings

The minimum requirements of the /ETAG 022:2007/ apply.

The performance characteristics must be indicated in accordance with the European Technical Assessment (ETA, no.).

Module 5: Dispersion-based primers and bonding agents for concrete and floor screeds

Performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance

Module 6: Dispersion-based products for surface protection of concrete

Dispersion-based products for surface protection systems of concrete comply with the following requirements (characteristics for all intended uses in accordance with /EN 1504-2:2005/, Tables 1 and 5):

- Permeability to CO2 (/EN 1062-6:2002/)
- Water vapour permeability (/EN ISO 7783-1/-2:2012/)
- Capillary absorption and permeability to water (/EN 1062-3:2008/)
- Measurement of bond strength by pull-off (/EN 1542:1999/)

Other performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance

Module 7: Dispersion-based primers, barrier coatings, varnishes and glazes for coating of buildings, structural elements and components for decorative, functional or protective purposes

The requirements of the /Decopaint Directive 2004/42/EC/ apply

- · for unpigmented primers
- for pigmented dispersion varnishes and dispersion primers in Decopaint product group d
- for water-soluble glazes in Decopaint product groups e or f
- for barrier primers in Decopaint product group g
- for single-component special varnishes in Decopaint product group i.

all of which are water-based.

Performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance.

2.4 Placing on the market / Application rules

For the placing on the market in the EU/EFTA (with the exception of Switzerland) products falling under the Regulation /(EU) No 305/2011/ need a Declaration of Performance taking into consideration either the relevant harmonised European standard or the European Technical Assessment as cited in chapter 2.3 and the CE-marking.

For the application and use of the products the respective national provisions apply.

2.5 Delivery status

Liquid or pasty in containers made of plastic or metal. Typical container sizes contain 1 to 30 kg, usually 10 to 20 kg of product on pallets. For larger applications, vats with approx. volumes of 200 kg (litres) or IBCs (intermediate bulk containers) with a capacity in excess of 1 tonne (m³) are also used.

A plastic container was modelled for the Life Cycle Assessment.

2.6 Base materials / Ancillary materials

Dispersion-based products usually comprise at least one synthetic resin dispersion, natural or synthetic resins dispersed in water, mineral fillers (e.g. chalk) and/or pigments. Auxiliaries such as thickening agents, defoaming agents, surface-active and dispersing agents as well as preservatives are used to fine-tune the product features.

On average, the products covered by this EPD contain the following range of base materials and auxiliaries (% by mass):

- Synthetic resin dispersion (solids portion): 5 65
- Natural resins, natural resin derivatives: 0 25
- Mineral fillers: 0 60
- Pigments: 0 35
- Water: 15 95
- Auxiliaries: 1 5
- Thickening agents: < 3
- Dispersing agents / Emulsifying agents: < 2
- Wetting agent: 2
- Other: 0 2

The biocidal products used contain agents which can be marketed in accordance with Biocidal Products Regulation /(EU) No 528/2012/.

In individual cases, it is possible that substances on the list of particularly harmful substances for inclusion in Annex XIV of the /REACH/ regulation are contained in concentrations of exceeding 0.1%. If this is the case,

this information can be found on the respective safety data sheet.

2.7 Manufacture

Dispersion-based products are usually mixed discontinuously in batch mode, i.e. in individual batches or series of individual batches, and filled into the delivery containers. The quality of the products and safe handling thereof is ensured by the corresponding regulations such as /ISO 9001:2008-12/ and the provisions outlined in the relevant regulations such as the Industrial Safety Regulation and Federal Pollution Control Act.

2.8 Environment and health during manufacturing

As a general rule, no particular environmental or health protection measures other than those specified by law are necessary.

2.9 Product processing/Installation

Dispersion-based products are processed on site using suitable tools, usually by hand. The products are applied by trowelling/knife-coating, painting, rolling or spraying, whereby health and safety measures (gloves and goggles, ventilation) are to be taken and consistently adhered to in accordance with the information on the safety data sheet and conditions on site

Depending on the application and product specifications, between 50 and 1,500 g/m² are applied.

2.10 Packaging

A detailed description of packaging is provided in section 2.5. Empty containers and clean foils can be recycled.

2.11 Condition of use

During the use phase dispersion-based products are existent as hardened film.

They are long-lasting products which protect our buildings in the form of primers, coatings or sealants as well as making an essential contribution towards their appearance, function and sustainability.

2.12 Environment and health during use Option 1 – Products for applications outside indoor areas with permanent stays by people No risks are known for water, air and soil if the products are used as designated.

Option 2 – Products for applications inside indoor areas with permanent stays by people

When used in indoor areas with permanent stays by people, evidence of the emission performance of construction products in contact with indoor air must be submitted according to national requirements. No further influences on the environment and health by emanating substances are known.

2.13 Reference service life

Dispersion-based products fulfil manifold, often specific, tasks in the construction, refurbishment or renovation of building structures. They decisively improve the usability of building structures and significantly extend their original service lives.

The anticipated reference service life depends on the specific installation situation and the exposure associated with the product. It can be influenced by weather factors as well as by mechanical or chemical loads.

2.14 Extraordinary effects

Fire

In terms of their application volumes, dispersion-bound products usually have no or only a subordinate influence on the fire characteristics of the structure in which they have been used.

Water

Dispersion-based products are only water-resistant to a certain degree and their strength can deteriorate when exposed to water for longer periods of time, detaching from the surface in a worst-case scenario. The primary components of dispersion-based products are not hazardous to water or only slightly hazardous to water. Owing to the overall low volumes of dispersion-based products used on buildings, no relevant contribution towards environmental damage can be anticipated by buildings featuring dispersion-based products in the event of extraordinary exposure to water.

Mechanical destruction

The mechanical destruction of dispersion-bound products does not lead to any decomposition products which are harmful for the environment or health.

2.15 Re-use phase

According to present knowledge, no known environmentally-hazardous effects in terms of disposal are to be generally anticipated through dismantling and recycling components to which hardened, dispersion-bound products adhere.

2.16 Disposal

The portion of a dispersion-based product applied at an other construction product is rather low. These low amounts do not play any role when the construction product is disposed. They do not interfere with the disposal/recycling of other components / building materials.

Hardened product residue mechanically removed from substrates must be disposed of as commercial / construction waste.

The following waste codes according to the European List of Waste (/2000/532/EC/) can apply: Hardened product residue:

08 01 12 waste paint and varnish other than those mentioned in 08 01 11

08 04 10 waste adhesives and sealants other than those mentioned in 08 04 09

2.17 Further information

More information is available in the manufacturer's product or safety data sheets and is available on the manufacturer's websites or on request. Valuable technical information is also available on the associations's websites.

3. LCA: Calculation rules

3.1 Declared Unit

This EPD refers to the declared unit of 1 kg dispersion-based product with a density of 1.000 - 1.500 kg/m³ in the mixing ratio required for processing the components in accordance the PCR part B for Coatings with organic binders.

Consumption per unit area of the products to be applied extensively can range between $50 - 3.000 \, \text{g/m}^2$.

The results of the Life Cycle Assessment provided in this declaration have been calculated from the product with the highest environmental impact (worst-case scenario).

Declared unit

Name	Value	Unit
Conversion factor to 1 kg	1	-
Declared unit	1	kg

3.2 System boundary

Modules A1-A3, A4, A5 and D are taken into consideration in the LCA:

- A1 Production of preliminary products
- A2 Transport to plant
- A3 Production (incl. provision of energy, production of packaging as well as auxiliaries and consumables, waste treatment)
- A4 Transport to site
- A5 Installation (disposal of packaging & installation losses and emissions during installation)
- D Credits from incineration of packaging materials & installation losses

The declaration is therefore from "cradle to gate - with options".

3.3 Estimates and assumptions

Where no specific /GaBi/ processes were available, the individual constituent materials of the formulations were estimated based on information provided by the manufacturerer or literature sources.

3.4 Cut-off criteria

All raw materials submitted for the formulations and production data were taken into consideration. The manufacture of machinery, plants and other infrastructure required for production of the products under review was not taken into consideration in the LCA.

Transport of packaging materials is also excluded.

3.5 Background data

Data from the /GaBi/ 6 database was used as background data. Where no background data was available, data gaps were complemented by manufacturer information and literature research.

3.6 Data quality

Representative products were selected for this EPD. The product displaying the highest environmental impacts in a group was selected for calculating the LCA results. The datasets are less than 5 years old. Data for production and packaging are based on details

provided by the manufacturer. The formulation used for evaluation refers to a specific product.

3.7 Period under review

Representative formulations were accepted by FEICA Ltd and collected in 2011.

3.8 Allocation

No allocations were applied for production. A multiinput allocation with a credit for electricity and thermal energy was used for incineration of production residues and packaging materials. The credits achieved through packaging disposal are declared in Module D.

3.9 Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account. In this case, 1 kg dispersion-based product was selected as the declared unit. Depending on the application, a corresponding conversion factor such as the specific weight per surface area must be taken into consideration.

4. LCA: Scenarios and additional technical information

The following technical information is a basis for the declared modules or can be used for developing specific scenarios in the context of a building assessment if modules are not declared (MND).

Transport to the building site (A4)

Name	Value	Unit
Litres of fuel	0.0016	l/100km
Transport distance	1000	km
Capacity utilisation (including empty runs)	85	%
Gross density of products transported	1000 - 1500	kg/m³
Capacity utilisation volume factor	1	-

Installation into the building (A5)

Name	Value	Unit
Material loss	0.01	kg
VOC in the air	0.077	kg

5. LCA: Results

PRODUCT STAGE CONSTRUCTI ON PROCESS USE STAGE END OF LIFE STAGE END OF LIFE STAGE SEVENT TO AND CONSTRUCTION ON PROCESS USE STAGE END OF LIFE STAGE END OF LIFE STAGE SEVENT TO AND CONSTRUCTION ON PROCESS USE STAGE END OF LIFE STAGE SEVENT TO AND CONSTRUCTION ON PROCESS USE STAGE USE ST	DESC	DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA: MND = MODULE NOT DECLARED)																	
A1				CONST ON PRO	RUCTI				`										BENEFITS AND LOADS BEYOND THE SYSTEM
X X X X X X MND MND	Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement		Keturbishment	Operational energy use	Operational water	esn	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
Parameter Unit	A1	A2	А3	A4	A5	B1	B2	В3	B4	E	35	В6	В	7	C1	C2	C3	C4	D
Parameter	Х	Х	Χ	X	Χ	MND	MND	MNI	DIMND	М	ND	MND	MN	ND	MND	MND	MND	MND	X
Section Sec	RESL	JLTS (OF TH	IE LCA	\ - EN\	VIRON	MENT	ALI	MPACT	: 1	kg	Dispe	rsio	n-k	pased	produ	ıct, Cla	ass A	
Depletion potential of the stratespheric ozone layer Rg SO₂-Eq. 1.28E-9 2.24E-13 4.99E-13 -2.28E-11 Acidification potential of land and water Rg SO₂-Eq. 2.36E-2 1.20E-4 1.69E-5 -1.10E-4 Eutrophication potential Rg (PO₂)²-Eq. 9.09E-4 2.78E-5 3.47E-6 -1.11E-5 Formation potential of tropospheric ozone photochemical oxidants Rg ethene-Eq. 1.41E-3 -3.37E-5 2.80E-2 -1.16E-5 Abiotic depletion potential for non-fossil resources Rg Sb-Eq. 2.60E-6 3.25E-9 1.53E-9 -1.18E-8 Abiotic depletion potential for fossil resources Rg Sb-Eq. 2.60E-6 3.25E-9 1.53E-9 -1.18E-8 Abiotic depletion potential for fossil resources Rg Sb-Eq. 2.60E-6 3.25E-9 1.53E-9 -1.18E-8 Abiotic depletion potential for fossil resources Rg Sb-Eq. 2.60E-6 3.25E-9 1.53E-9 -1.18E-8 Abiotic depletion potential for fossil resources Rg Sb-Eq. 2.60E-6 3.25E-9 1.53E-9 -1.18E-8 Abiotic depletion potential for fossil resources Rg Sb-Eq. 2.60E-6 3.25E-9 1.53E-9 -1.18E-8 Abiotic depletion potential for fossil resources Rg Sb-Eq. 2.60E-6 3.25E-9 1.53E-9 -1.18E-8 Abiotic depletion potential for fossil resources Rg Sb-Eq. 2.60E-6 3.25E-9 1.53E-9 -1.18E-8 Abiotic depletion potential for fossil resources Rg Sb-Eq. 2.60E-6 3.25E-9 1.53E-9 -1.18E-8 Abiotic depletion potential for fossil resources Rg Sb-Eq. 2.60E-6 3.25E-9 1.53E-9 -1.18E-8 Renewable primary energy as energy carrier Rg Sb-Eq. 2.60E-6 3.25E-9 1.53E-9 -1.18E-8 Renewable primary energy as energy carrier Rg Sb-Eq. 1.60E-0 RD RD RD RD RD RD RD R				Param	eter				Unit			A1-A3			A4		A 5		D
Acidification potential of land and water [kg GV_4]^S-Eq.] 2.36E-2 1.20E-4 1.69E-5 -1.10E-4 Eutrophication potential [kg (PO_4)^S-Eq.] 9.09E-4 2.78E-5 3.47E-6 -1.11E-5 Formation potential of tropospheric ozone photochemical oxidants [kg GV_4]^S-Eq.] 9.09E-4 2.78E-5 3.47E-6 -1.11E-5 Abiotic depletion potential for non-fossil resources [kg Sb-Eq.] 1.41E-3 -3.37E-5 2.80E-2 -1.16E-5 Abiotic depletion potential for non-fossil resources [kg Sb-Eq.] 2.60E-6 3.25E-9 1.53E-9 -1.18E-8 Abiotic depletion potential for fossil resources [kg Sb-Eq.] 2.60E-6 3.25E-9 1.53E-9 -1.18E-8 Abiotic depletion potential for fossil resources [kJ] 4.54E+1 6.71E-1 2.67E-2 9.48E-1 RESULTS OF THE LCA - RESOURCE USE: 1 kg Dispersion-based product, Class A Parameter													4.87E-2						
Eutrophication potential [kg (PC ₄) ³ -Eq.] 9.09E-4 2.78E-5 3.47E-6 -1.11E-5							layer	[
Formation potential of tropospheric ozone photochemical oxidants Kig ethen-Eq. 1.41E-3 3.37E-5 2.80E-2 -1.18E-5		Ac															1.69E	-5	
Abiotic depletion potential for non-fossil resources Fkg Sb-Eq. 2.60E-6 3.25E-9 1.53E-9 -1.18E-8	<u> </u>							_ [kg (PO₄)³-l	q.]	_			-					
Abiotic depletion potential for fossil resources [MJ] 4.54E+1 6.71E-1 2.67E-2 -9.48E-1	Format							ints [
RESULTS OF THE LCA - RESOURCE USE: 1 kg Dispersion-based product, Class A Parameter Unit A1-A3 A4 A5 D Renewable primary energy as energy carrier [MJ] 4.31E+0 IND IND IND Renewable primary energy resources as material utilization [MJ] 0.00E+0 IND IND IND Total use of renewable primary energy as energy carrier [MJ] 4.31E+0 3.82E-2 3.97E-3 -1.57E-1 Non-renewable primary energy as energy carrier [MJ] 4.29E+1 IND IND IND Non-renewable primary energy as material utilization [MJ] 6.40E+0 IND IND IND Non-renewable primary energy as material utilization [MJ] 6.40E+0 IND IND IND Total use of non-renewable primary energy resources [MJ] 4.93E+1 6.74E-1 3.16E-2 -1.16E+0 Use of secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of nerrenewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td colspan="3"></td> <td></td> <td colspan="3"></td> <td></td> <td></td>								-											
Name	DEGI		_					E- 1						roc				2	-9. 4 0L-1
Renewable primary energy as energy carrier [MJ] 4.31E+0 IND IND IND IND Renewable primary energy resources as material utilization [MJ] 0.00E+0 IND IN	KESC	LIS		IE LUF	1 - KE	SOUR	CE US	<u> </u>		Jer			eu p	100		iass i			
Renewable primary energy resources as material utilization MJ 0.00E+0 IND IND IND IND Total use of renewable primary energy resources MJ 4.31E+0 3.82E-2 3.97E-3 -1.57E-1 Non-renewable primary energy as energy carrier MJ 4.29E+1 IND IN									Unit						A4				
Total use of renewable primary energy resources [MJ]																			
Non-renewable primary energy as energy carrier [MJ] 4.29E+1 IND IND IND IND Non-renewable primary energy as material utilization [MJ] 6.40E+0 IND IND	Re							n											
Non-renewable primary energy as material utilization [MJ] 6.40E+0 IND IND IND Total use of non-renewable primary energy resources [MJ] 4.93E+1 6.74E-1 3.16E-2 -1.16E+0																		3	
Total use of non-renewable primary energy resources [MJ]															_				
Use of secondary material Kg 0.00E+0 0.00E+0 0.00E+0 0.00E+0														6				,	
Use of renewable secondary fuels [MJ] 0.00E+0 0.		Total use					3001003												
Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of net fresh water [m³] 7.54E-2 9.56E-5 3.83E-4 -2.44E-4 RESULTS OF THE LCA — OUTPUT FLOWS AND WASTE CATEGORIES: 1 kg Dispersion-based product, Class A Parameter Unit A1-A3 A4 A5 D																			
RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: 1 kg Dispersion-based product, Class A Unit A1-A3 A4 A5 D Hazardous waste disposed [kg] 1.56E-5 5.09E-8 5.80E-11 -4.48E-10 Non-hazardous waste disposed [kg] 3.86E-1 5.66E-5 1.45E-3 -4.13E-4 Radioactive waste disposed [kg] 1.34E-3 9.63E-7 1.96E-6 -8.45E-5 Components for re-use [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for recycling [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for energy recovery [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Exported electrical energy [MJ] 0.00E+0 0.00E+0 2.42E-1 0.00E+0		ι					3				0.00	0E+0		0.	00E+0		0.00E+0)	0.00E+0
Parameter Unit A1-A3 A4 A5 D Hazardous waste disposed [kg] 1.56E-5 5.09E-8 5.80E-11 -4.48E-10 Non-hazardous waste disposed [kg] 3.86E-1 5.66E-5 1.45E-3 -4.13E-4 Radioactive waste disposed [kg] 1.34E-3 9.63E-7 1.96E-6 -8.45E-5 Components for re-use [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for recycling [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for energy recovery [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Exported electrical energy [MJ] 0.00E+0 0.00E+0 2.42E-1 0.00E+0																	3.83E-4	-	-2.44E-4
Parameter Unit A1-A3 A4 A5 D Hazardous waste disposed [kg] 1.56E-5 5.09E-8 5.80E-11 -4.48E-10 Non-hazardous waste disposed [kg] 3.86E-1 5.66E-5 1.45E-3 -4.13E-4 Radioactive waste disposed [kg] 1.34E-3 9.63E-7 1.96E-6 -8.45E-5 Components for re-use [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for recycling [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for energy recovery [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Exported electrical energy [MJ] 0.00E+0 0.00E+0 2.42E-1 0.00E+0	RESU	JLTS (Dispe	OF TH	IE LCA	nrodi	TPUT	FLOW	IS A	ND WA	STI	E C	ATEG	ORI	ES:	:				
Non-hazardous waste disposed [kg] 3.86E-1 5.66E-5 1.45E-3 4.13E-4 Radioactive waste disposed [kg] 1.34E-3 9.63E-7 1.96E-6 -8.45E-5 Components for re-use [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for recycling [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for energy recovery [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Exported electrical energy [MJ] 0.00E+0 0.00E+0 2.42E-1 0.00E+0	1.19	эторо.	Ololl			, O., O.	400 A		Unit		A1	-A3	Т		A4		A5		D
Non-hazardous waste disposed [kg] 3.86E-1 5.66E-5 1.45E-3 4.13E-4 Radioactive waste disposed [kg] 1.34E-3 9.63E-7 1.96E-6 -8.45E-5 Components for re-use [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for recycling [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for energy recovery [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Exported electrical energy [MJ] 0.00E+0 0.00E+0 2.42E-1 0.00E+0			Haz	ardous wa	aste disno	osed			[ka]		1.50	6E-5		5	.09E-8		5.80F-1	1	-4.48E-10
Radioactive waste disposed [kg] 1.34E-3 9.63E-7 1.96E-6 -8.45E-5 Components for re-use [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for recycling [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for energy recovery [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Exported electrical energy [MJ] 0.00E+0 0.00E+0 2.42E-1 0.00E+0													\top						
Components for re-use [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for recycling [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for energy recovery [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Exported electrical energy [MJ] 0.00E+0 0.00E+0 2.42E-1 0.00E+0																			
Materials for recycling [kg] 0.00E+0 0.00E+0 0.00E+0 Materials for energy recovery [kg] 0.00E+0 0.00E+0 0.00E+0 Exported electrical energy [MJ] 0.00E+0 0.00E+0 2.42E-1 0.00E+0			Co	omponent	s for re-u	se			[kg]		0.00	0E+0		0.	00E+0		0.00E+0)	0.00E+0
Exported electrical energy [MJ] 0.00E+0 0.00E+0 2.42E-1 0.00E+0									[kg]										
																\perp			
													-			-			

6. LCA: Interpretation

The majority of life cycle energy consumption takes place during the production phase (A1-A3). Significant contributions to Primary Energy Demand - Nonrenewable (PENRT) derive from the energy resources used in the production of raw materials. The largest contributor to Primary Energy Demand - Renewable (PERT) is the consumption of renewable energy resources required for the generation and supply of electricity. During manufacturing (A1-A3) some influence also arises due to the wooden pallets used as packaging that need solar energy for photosynthesis. It should be noted that Primary Energy Demand - Renewable (PERT) generally represents a small percentage of the production phase primary energy demand with the bulk of the demand coming from non-renewable energy resources.

Transportation to the construction site (A4) and the installation process (A5) make a minor contribution to almost all impacts. The only exception is the photochemical ozone creation potential (POCP) that is significantly influenced by the installation of the product due to emissions of volatile substances of maximum 7.7%. This leads to a contribution of the installation phase of up to 95/% on the overall life cycle of the product. Emissions associated with the manufacturing of products (A3) only have a negligible influence on POCP.

In module A4, transport to construction site, values for POCP are negative due to emission profile modelled for the selected transportation process and of the characterisation method used in /CML 2001/ for the calculation of the POCP. Transportation processes are responsible for the emission of NOx in the ground layer

atmosphere. NO in particular can have an ozone depleting effect that is reflected in /CML 2001/ by assigning a negative characterisation factor to this substance. However, although these negative values may appear unusual, it should be considered that POCP is only one of the analysed environmental impact categories. All other potential impacts would increase with greater transportation distances, showing that transportation is a process leading to net environmental burdens. Furthermore, even for POCP,

transportation processes needed for supply of materials and product distribution only have limited counterbalance effects on the overall LCA results. Scrap burdens and energy credit from incineration of packaging material reported in module D are of little importance.

In general, CO_2 is the most important contributor to Global Warming Potential (GWP). For the Acidification Potential (AP), NO_x and SO_2 as well as HCl contribute to the largest share.

7. Requisite evidence

7.1 VOC

Special tests and evidence have not been carried out or provided within the framework of drawing up this Model EPD. Some member states require special documentation on VOC emissions into indoor air for specific areas of application. This documentation, as well as documentation for voluntary VOC labelling, has to be provided separately and is specific for products in question.

Evidence pertaining to VOC emissions shall show either an attestation of compliance with,

- or documentation of test data that are required in, any of the existing regulations or in any of the existing voluntary labeling programs for low-emitting products, as far as these
- (1) include limits for the parameters TVOC, TSVOC, carcinogens, formaldehyde, acetaldehyde, LCI limits for individual substances (including but not limited to the European list of harmonized LCIs), and the R value:
- (2) base their test methods on /CEN/TS 16516/ (or /EN 16516/, after the on-going revision of /CEN/TS 16516/);
- (3) perform testing and apply the limits after 28 days storage in a ventilated test chamber, under the conditions specified in /CEN/TS 16516/; some regulations and programs also have limits after 3 days, on top of the 28 days limits;

(4) express the test results as air concentrations in the European Reference Room, as specified in /CEN/TS 16516/.

Examples of such regulations are the Belgian /Royal Decree C-2014/24239/, or the German /AgBB/. Examples of such voluntary labeling programs are /EMICODE/, /Blue Angel/ or /Indoor Air Comfort/.

Relevant test results shall be produced either by an /ISO 17025/ accredited commercial test lab, or by a qualified internal test lab of the manufacturer. Examples for the applied limits after 28 days storage in a ventilated test chamber are:

- TVOC: 1000 μg/m³
 TSVOC: 100 μg/m³
- Each carcinogen: 1 μg/m³
- Formaldehyde: 100 µg/m³
- LCI: different per substance involved
- R value: 1 (meaning that, in total, 100% of the combined LCI values must not be exceeded).

Informative Annexes (2 tables):

The table shown below is an overview of the most relevant regulations and specifications as of April 2015, as regards requirements after 3 days storage in a ventilated test chamber.

	TVOC [μg/m³]	Sum of carcinogens. C1A,CA2 [μg/m³]	Formal- dehyde [µg/m³]	Acet- aldehyde [μg/m³]	Sum of Form- and Acet- aldehyde
German DIBt/AgBB regulation	10 000	10	-/-	-/-	-/-
draft Lithuanian regulation	10 000	10	-/-	-/-	-/-
EMICODE EC1	1 000	10	50	50	50 ppb
EMICODE EC1 PLUS	750	10	50	50	50 ppb

	TVOC [µg/m³]	TSVOC [μg/m³]	Each carcinogen C1A,CA2 [µg/m³]	Formaldehyde [µg/m³]	Acetaldehyde [μg/m³]	ΓCI	R value	Specials	Sum non-LCI & non- identified [µg/m³]
Belgian regulation	1000	100	1	100	200	Belgian list	1	Toluene 300 μg/m³	-/-
French regulations class A+	1000	-/-	-/-	10	200	-/-	-/-	List of 8 VOCs, 4 CMR	-/-
French regulations class A	1500	-/-	-/-	60	300	-/-	-/-	List of 8 VOCs, 4 CMR	-/-
French regulations class B	2000	-/-	-/-	120	400	-/-	-/-	List of 8 VOCs, 4 CMR	-/-
French regulations class C	>2000	-/-	-/-	>120	>400	-/-	-/-	List of 8 VOCs, 4 CMR	-/-
German DIBt/AgBB regulation	1000	100	1	100	1200	German AgBB list	1	-/-	100
draft Lithuanian regulation	1000	100	1	product type specific	-/-	Lithua- nian list	1	-/-	-/-
EMICODE EC1	100	50	1	(after 3 days)	(after 3 days)	-/-	-/-	-/-	-/-
EMICODE EC1 PLUS	60	40	1	(after 3 days)	(after 3 days)	German AgBB list	1	-/-	40
Finnish M1, sealants	20	-/-	1	10	-/-	-/-	-/-	Ammonia, odour	-/-
Finnish M1, adhesives	200 μg/m²h	-/-	5 μg/m²h	50 μg/m²h	-/-	-/-	-/-	Ammonia, odour	-/-

The table above provides an overview of the most relevant regulations and specifications as of April 2015, as regards requirements after 28 days storage in a ventilated test chamber. Some details may be missing in the table due to lack of space. Values given represent maximum values/limits.

7.2 Leaching:

Dispersion-based products in outdoor applications are not used in areas with contact to soil and groundwater. There are currently no European or national

assessment criteria or emission scenarios in place for scenarios involving watered components.

7.3 Fire gas toxicity

The fire gases incurred by organic products contain hazardous substances but no particularly hazardous emissions. Testing toxicity of the fire gases makes sense particularly in the system configuration of the products and is therefore not carried out for individual coatings as the fire gases are essentially influenced by the type of substrate involved.

8. References

PCR 2013, Part A: 2013-04

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rule for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation rules for the Life Cycle Assessment and requirements on the Background Report www.bau-umwelt.de

PCR 2013, Part B: 2013-07

Product Category Rules for Construction Products, Part B: Requirements on the EPD for coatings with organic binding agents

GaBi 6 2014:

Software and data base for comprehensive analysis. LBP, University of Stuttgart and thinkstep, 2014

GaBi 6 2014b:

Documentation of GaBi 6 data sets from the data base

for comprehensive analysis LBP, University of Stuttgart and thinkstep, 2014 http://documentation.gabi-software.com/

CEN/TS 14472:2003-10

Resilient, textile and laminate floor coverings - Design, preparation and installation – Part 1: General; Part 2: Textile floor coverings; Part 3: Laminate floor coverings; Part 4: Resilient floor coverings

EN 14259:2004-07

Adhesives for floor coverings – Requirements for mechanical and electrical performance

EN 14293:2006-10

Adhesives – Adhesives for bonding parquet to subfloor – Test methods and minimum requirements

EN 12004:2014-02

Adhesives for tiles – Requirements, evaluation of conformity, classification and designation

EN 1324:2014-08

Adhesives for tiles – Determination of shear adhesion strength of dispersion adhesives

EN 1346:2007-11

Adhesives for tiles - Determination of open time

EN ISO 9001:2009-12

Quality management systems - Requirements

EN 923:2015-06

Adhesives - Terms and definitions

EN 1504-2:2015-03

Products and systems for the protection and repair of concrete structures – Definitions, requirements, quality control and evaluation of conformity – Part 2: Surface protection systems for concrete

EN 1062-6:2002-10

Paints and varnishes – Coating materials and coating systems for exterior masonry and concrete – Part 6: Determination of carbon dioxide permeability

EN ISO 7783:2012-02

Paints and varnishes – Determination of water-vapour transmission properties – Cup method

EN 1062-3:2008-04

Paints and varnishes – Coating materials and coating systems for exterior masonry and concrete – Part 3: Determination of liquid water permeability

EN 1542:1999-07

Products and systems for the protection and repair of concrete structures – Test methods – Measurement of bond strength by pull-off

ETAG 022:2007-07

Guideline for European technical approval of watertight covering kits for wetroom floors and/or walls – Part 1: Liquid-applied coverings with or without wearing surface

GEV/EMICODE:2010-07

Gemeinschaft Emissionskontrollierte Verlegewerkstoffe, Klebstoffe und Bauprodukte e.V., Düsseldorf; www.emicode.de/

Blue Angel

Environmental label organised by the federal government of Germany www.blauer-engel.de

Indoor Air Comfort

Product certification by Eurofins, Hamburg, Germany www.eurofins.com

Decopaint Directive 2004/42/EC:

Directive 2004/42/EC of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and in vehicle refinishing products and amending Directive 1999/13/EC, 2004-04

Harmonised conditions for the marketing of construction products:

Regulation (EÚ) No 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC

ISO 16000-3:2013-01

Indoor air – Part 3: Determination of formaldehyde and other carbonyl compounds by sampling using a pump

ISO 16000-6:2012-11

Indoor air – Part 6: Determination of volatile organic compounds indoors and in test chambers by sampling on TENAX TA®, thermal desorption and gas chromatography using MS or FID

EN ISO 16000-9:2008-04

Indoor air – Part 9: Determination of the emission of volatile organic compounds from building products and furnishings – Emission test chamber method

EN ISO 16000-11:2006-06

Indoor air – Part 11: Determination of the emission of volatile organic compounds from building products and furnishings – Sampling, storage of samples and preparation of test specimens

CEN/TS 16516:2015-07

Construction products - Assessment of release of dangerous substances - Determination of emissions into indoor air

Royal Decree C-2014/24239

Belgisch Staatsblad 8 MEI 2014, p. 60603. — Koninklijk besluit tot vaststelling van de drempelniveaus voor de emissies naar het binnenmilieu van bouwproducten voor bepaalde geoogde gebruiken

EN 17025: 2007-05

General requirements for the competence of testing and calibration laboratories

AgBB

Committee for Health-related Evaluation of Building Products: health-related evaluation of emissions of volatile organic compounds (VOC and SVOC) from building products; status: June 2012 www.umweltbundesamt.de/produkte/bauprodukte/agb b.htm

REACH Regulation:

Regulation (EC) No. 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No. 793/93, Commission Regulation (EC) No. 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, 2006-12

Biocidal Products Regulation:

Regulation (EU) No. 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products, 2012-05

CML 2001:

Institute of Environmental Sciences Leiden: CML method 2001, last update of characterization factors in November 2013,

http://www.cml.leiden.edu/software/data-cmlia.html

Institut Bauen und Umwelt

Institut Bauen und Umwelt e.V., Berlin(pub.): Generation of Environmental Product Declarations (EPDs);

General principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013/04 www.bau-umwelt.de

ISO 14025

DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804

EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

Publisher

| Institut Bauen und Umwelt e.V. | Tel | +49 (0)30 3087748- 0 | Panoramastr. 1 | Fax | +49 (0)30 3087748- 29 | 10178 Berlin | Mail | info@bau-umwelt.com | Germany | Web | www.bau-umwelt.com |

Programme holder

thinkstep

Author of the Life Cycle Assessment

 thinkstep AG
 Tel
 +49 (0)711 341817 0

 Hauptstrasse 111 - 113
 Fax
 +49 (0)711 341817 25

 70771 Leinfelden-Echterdingen
 Mail
 info@thinkstep.com

 Germany
 Web
 www.thinkstep.com

Owner of the Declaration

FEICA - Association of the European
Adhesive and Sealant Industry
Avenue E. van Nieuwenhuyse 4
B-1160 Brussels
Web
Belgium

+32 (0)267 673 20 +32 (0)267 673 99 info@feica.eu www.feica.eu